Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Aging (Albany NY) ; 16(7): 5829-5855, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613792

Aging is characterized by declining health that results in decreased cellular resilience and neuromuscular function. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of pharmacological anti-aging interventions. Here we assessed swimming performance as well as survival under thermal and oxidative stress across a nematode genetic diversity test panel to evaluate health effects for three compounds previously studied in the Caenorhabditis Intervention Testing Program and thought to promote longevity in different ways - NP1 (nitrophenyl piperazine-containing compound 1), propyl gallate, and resveratrol. Overall, we find the relationships among median lifespan, oxidative stress resistance, thermotolerance, and mobility vigor to be complex. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. In this study, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Notably, some compounds exert strong impact on some health measures without an equally strong impact on lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible anti-aging interventions, with data underscoring how personalized treatments might be required to optimize health benefits.


Caenorhabditis elegans , Longevity , Oxidative Stress , Animals , Longevity/drug effects , Longevity/genetics , Oxidative Stress/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Resveratrol/pharmacology , Aging/drug effects , Aging/genetics , Genetic Background , Swimming , Piperazines/pharmacology , Stilbenes/pharmacology
2.
Ageing Res Rev ; 97: 102293, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38574864

With geroscience research evolving at a fast pace, the need arises for human randomized controlled trials to assess the efficacy of geroprotective interventions to prevent age-related adverse outcomes, disease, and mortality in normative aging cohorts. However, to confirm efficacy requires a long-term and costly approach as time to the event of morbidity and mortality can be decades. While this could be circumvented using sensitive biomarkers of aging, current molecular, physiological, and digital endpoints require further validation. In this review, we discuss how collecting real-world evidence (RWE) by obtaining health data that is amenable for collection from large heterogeneous populations in a real-world setting can help speed up validation of geroprotective interventions. Further, we propose inclusion of quality of life (QoL) data as a biomarker of aging and candidate endpoint for geroscience clinical trials to aid in distinguishing healthy from unhealthy aging. We highlight how QoL assays can aid in accelerating data collection in studies gathering RWE on the geroprotective effects of repurposed drugs to support utilization within healthy longevity medicine. Finally, we summarize key metrics to consider when implementing QoL assays in studies, and present the short-form 36 (SF-36) as the most well-suited candidate endpoint.

3.
Brain Behav Immun Health ; 36: 100733, 2024 Mar.
Article En | MEDLINE | ID: mdl-38352659

A subset of patients experiences persistent fatigue symptoms after COVID-19, and patients may develop long COVID, which is characterized by lasting systemic symptoms. No treatments for this condition have been validated and are urgently warranted. In this pilot study, we assessed whether treatment with low-dose naltrexone (LDN, 4.5 mg/day) and supplementation with NAD + through iontophoresis patches could improve fatigue symptoms and quality of life in 36 patients with persistent moderate/severe fatigue after COVID-19. We detected a significant increase from baseline in SF-36 survey scores after 12 weeks of treatment (mean total SF-36 score 36.5 [SD: 15.6] vs. 52.1 [24.8]; p < 0.0001), suggestive of improvement of quality of life. Furthermore, participants scored significantly lower on the Chalder fatigue scale after 12 weeks of treatment (baseline: 25.9 [4.6], 12 weeks: 17.4 [9.7]; p < 0.0001). We found a subset of 52 % of patients to be responders after 12 weeks of treatment. Treatment was generally safe, with mild adverse events previously reported for LDN, which could be managed with dose adjustments. The iontophoresis patches were associated with mild, short-lived skin irritation in 25 % of patients. Our data suggest treatment with LDN and NAD+ is safe and may be beneficial in a subset of patients with persistent fatigue after COVID-19. Larger randomized controlled trials will have to confirm our data and determine which patient subpopulations might benefit most from this strategy.

4.
Geroscience ; 46(2): 2239-2251, 2024 Apr.
Article En | MEDLINE | ID: mdl-37923874

The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies-for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.


Antioxidants , Caenorhabditis , Animals , Humans , Aged , Antioxidants/pharmacology , Masoprocol/pharmacology , Masoprocol/metabolism , Caenorhabditis elegans/genetics , Longevity , Health Promotion , Plant Extracts/pharmacology , Tea/metabolism , Mammals
5.
Aging Cell ; 21(1): e13488, 2022 01.
Article En | MEDLINE | ID: mdl-34837316

Metformin, the most commonly prescribed anti-diabetes medication, has multiple reported health benefits, including lowering the risks of cardiovascular disease and cancer, improving cognitive function with age, extending survival in diabetic patients, and, in several animal models, promoting youthful physiology and lifespan. Due to its longevity and health effects, metformin is now the focus of the first proposed clinical trial of an anti-aging drug-the Targeting Aging with Metformin (TAME) program. Genetic variation will likely influence outcomes when studying metformin health effects in human populations. To test for metformin impact in diverse genetic backgrounds, we measured lifespan and healthspan effects of metformin treatment in three Caenorhabditis species representing genetic variability greater than that between mice and humans. We show that metformin increases median survival in three C. elegans strains, but not in C. briggsae and C. tropicalis strains. In C. briggsae, metformin either has no impact on survival or decreases lifespan. In C. tropicalis, metformin decreases median survival in a dose-dependent manner. We show that metformin prolongs the period of youthful vigor in all C. elegans strains and in two C. briggsae strains, but that metformin has a negative impact on the locomotion of C. tropicalis strains. Our data demonstrate that metformin can be a robust promoter of healthy aging across different genetic backgrounds, but that genetic variation can determine whether metformin has positive, neutral, or negative lifespan/healthspan impact. These results underscore the importance of tailoring treatment to individuals when testing for metformin health benefits in diverse human populations.


Aging/genetics , Caenorhabditis elegans/drug effects , Hypoglycemic Agents/therapeutic use , Longevity/genetics , Metformin/therapeutic use , Animals , Humans , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Treatment Outcome
6.
iScience ; 24(2): 102105, 2021 Feb 19.
Article En | MEDLINE | ID: mdl-33659873

Extended space travel is a goal of government space agencies and private companies. However, spaceflight poses risks to human health, and the effects on the nervous system have to be better characterized. Here, we exploited the unique experimental advantages of the nematode Caenorhabditis elegans to explore how spaceflight affects adult neurons in vivo. We found that animals that lived 5 days of adulthood on the International Space Station exhibited hyperbranching in PVD and touch receptor neurons. We also found that, in the presence of a neuronal proteotoxic stress, spaceflight promotes a remarkable accumulation of neuronal-derived waste in the surrounding tissues, suggesting an impaired transcellular degradation of debris released from neurons. Our data reveal that spaceflight can significantly affect adult neuronal morphology and clearance of neuronal trash, highlighting the need to carefully assess the risks of long-duration spaceflight on the nervous system and to develop adequate countermeasures for safe space exploration.

7.
Geroscience ; 41(6): 945-960, 2019 12.
Article En | MEDLINE | ID: mdl-31820364

The goal of the Caenorhabditis Intervention Testing Program is to identify robust and reproducible pro-longevity interventions that are efficacious across genetically diverse cohorts in the Caenorhabditis genus. The project design features multiple experimental replicates collected by three different laboratories. Our initial effort employed fully manual survival assays. With an interest in increasing throughput, we explored automation with flatbed scanner-based Automated Lifespan Machines (ALMs). We used ALMs to measure survivorship of 22 Caenorhabditis strains spanning three species. Additionally, we tested five chemicals that we previously found extended lifespan in manual assays. Overall, we found similar sources of variation among trials for the ALM and our previous manual assays, verifying reproducibility of outcome. Survival assessment was generally consistent between the manual and the ALM assays, although we did observe radically contrasting results for certain compound interventions. We found that particular lifespan outcome differences could be attributed to protocol elements such as enhanced light exposure of specific compounds in the ALM, underscoring that differences in technical details can influence outcomes and therefore interpretation. Overall, we demonstrate that the ALMs effectively reproduce a large, conventionally scored dataset from a diverse test set, independently validating ALMs as a robust and reproducible approach toward aging-intervention screening.


Biological Assay/methods , Caenorhabditis elegans/growth & development , Ketoglutaric Acids/pharmacology , Longevity/drug effects , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/radiation effects , Lasers , Longevity/radiation effects , Photic Stimulation
8.
Proc Natl Acad Sci U S A ; 116(47): 23829-23839, 2019 11 19.
Article En | MEDLINE | ID: mdl-31685639

Regular physical exercise is the most efficient and accessible intervention known to promote healthy aging in humans. The molecular and cellular mechanisms that mediate system-wide exercise benefits, however, remain poorly understood, especially as applies to tissues that do not participate directly in training activity. The establishment of exercise protocols for short-lived genetic models will be critical for deciphering fundamental mechanisms of transtissue exercise benefits to healthy aging. Here we document optimization of a long-term swim exercise protocol for Caenorhabditis elegans and we demonstrate its benefits to diverse aging tissues, even if exercise occurs only during a restricted phase of adulthood. We found that multiple daily swim sessions are essential for exercise adaptation, leading to body wall muscle improvements in structural gene expression, locomotory performance, and mitochondrial morphology. Swim exercise training enhances whole-animal health parameters, such as mitochondrial respiration and midlife survival, increases functional healthspan of the pharynx and intestine, and enhances nervous system health by increasing learning ability and protecting against neurodegeneration in models of tauopathy, Alzheimer's disease, and Huntington's disease. Remarkably, swim training only during early adulthood induces long-lasting systemic benefits that in several cases are still detectable well into midlife. Our data reveal the broad impact of swim exercise in promoting extended healthspan of multiple C. elegans tissues, underscore the potency of early exercise experience to influence long-term health, and establish the foundation for exploiting the powerful advantages of this genetic model for the dissection of the exercise-dependent molecular circuitry that confers system-wide health benefits to aging adults.


Caenorhabditis elegans/physiology , Learning , Neuroprotection , Swimming , Adaptation, Physiological , Animals , Intestines/physiology , Muscles/physiology , Nervous System Physiological Phenomena
9.
BMC Biol ; 15(1): 30, 2017 04 10.
Article En | MEDLINE | ID: mdl-28395669

BACKGROUND: Exercise exerts remarkably powerful effects on metabolism and health, with anti-disease and anti-aging outcomes. Pharmacological manipulation of exercise benefit circuits might improve the health of the sedentary and the aging populations. Still, how exercised muscle signals to induce system-wide health improvement remains poorly understood. With a long-term interest in interventions that promote animal-wide health improvement, we sought to define exercise options for Caenorhabditis elegans. RESULTS: Here, we report on the impact of single swim sessions on C. elegans physiology. We used microcalorimetry to show that C. elegans swimming has a greater energy cost than crawling. Animals that swam continuously for 90 min specifically consumed muscle fat supplies and exhibited post-swim locomotory fatigue, with both muscle fat depletion and fatigue indicators recovering within 1 hour of exercise cessation. Quantitative polymerase chain reaction (qPCR) transcript analyses also suggested an increase in fat metabolism during the swim, followed by the downregulation of specific carbohydrate metabolism transcripts in the hours post-exercise. During a 90 min swim, muscle mitochondria matrix environments became more oxidized, as visualized by a localized mitochondrial reduction-oxidation-sensitive green fluorescent protein reporter. qPCR data supported specific transcriptional changes in oxidative stress defense genes during and immediately after a swim. Consistent with potential antioxidant defense induction, we found that a single swim session sufficed to confer protection against juglone-induced oxidative stress inflicted 4 hours post-exercise. CONCLUSIONS: In addition to showing that even a single swim exercise bout confers physiological changes that increase robustness, our data reveal that acute swimming-induced changes share common features with some acute exercise responses reported in humans. Overall, our data validate an easily implemented swim experience as C. elegans exercise, setting the foundation for exploiting the experimental advantages of this model to genetically or pharmacologically identify the exercise-associated molecules and signaling pathways that confer system-wide health benefits.


Caenorhabditis elegans/physiology , Exercise/physiology , Mammals/physiology , Swimming/physiology , Animals , Caenorhabditis elegans/genetics , Energy Metabolism/physiology , Glucose/metabolism , Humans , Lipid Metabolism , Mitochondria/metabolism , Movement/physiology , Muscles/metabolism , Oxidative Stress , Physical Conditioning, Animal , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic
10.
Nat Commun ; 8: 14256, 2017 02 21.
Article En | MEDLINE | ID: mdl-28220799

Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions.


Caenorhabditis/drug effects , Genetic Background , Longevity/drug effects , Organic Chemicals/pharmacology , Animals , Benzothiazoles , Caenorhabditis/classification , Caenorhabditis/genetics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Dose-Response Relationship, Drug , Fertility/drug effects , Fertility/genetics , Longevity/genetics , Reproducibility of Results , Species Specificity , Thiazoles/pharmacology
11.
Nature ; 542(7641): 367-371, 2017 02 16.
Article En | MEDLINE | ID: mdl-28178240

The toxicity of misfolded proteins and mitochondrial dysfunction are pivotal factors that promote age-associated functional neuronal decline and neurodegenerative disease. Accordingly, neurons invest considerable cellular resources in chaperones, protein degradation, autophagy and mitophagy to maintain proteostasis and mitochondrial quality. Complicating the challenges of neuroprotection, misfolded human disease proteins and mitochondria can move into neighbouring cells via unknown mechanisms, which may promote pathological spread. Here we show that adult neurons from Caenorhabditis elegans extrude large (approximately 4 µm) membrane-surrounded vesicles called exophers that can contain protein aggregates and organelles. Inhibition of chaperone expression, autophagy or the proteasome, in addition to compromising mitochondrial quality, enhances the production of exophers. Proteotoxically stressed neurons that generate exophers subsequently function better than similarly stressed neurons that did not produce exophers. The extruded exopher transits through surrounding tissue in which some contents appear degraded, but some non-degradable materials can subsequently be found in more remote cells, suggesting secondary release. Our observations suggest that exopher-genesis is a potential response to rid cells of neurotoxic components when proteostasis and organelle function are challenged. We propose that exophers are components of a conserved mechanism that constitutes a fundamental, but formerly unrecognized, branch of neuronal proteostasis and mitochondrial quality control, which, when dysfunctional or diminished with age, might actively contribute to pathogenesis in human neurodegenerative disease and brain ageing.


Caenorhabditis elegans/metabolism , Cell-Derived Microparticles/metabolism , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Neuroprotection/physiology , Protein Aggregates , Aging/metabolism , Aging/pathology , Animals , Autophagy , Caenorhabditis elegans/cytology , Cytoplasm/metabolism , Molecular Chaperones/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Oxidation-Reduction , Proteasome Endopeptidase Complex/metabolism
12.
Nat Struct Mol Biol ; 20(11): 1325-32, 2013 Nov.
Article En | MEDLINE | ID: mdl-24096364

Little is known about the extent to which individual microRNAs (miRNAs) regulate common processes of tumor biology across diverse cancer types. Using molecular profiles of >3,000 tumors from 11 human cancer types in The Cancer Genome Atlas, we systematically analyzed expression of miRNAs and mRNAs across cancer types to infer recurrent cancer-associated miRNA-target relationships. As we expected, the inferred relationships were consistent with sequence-based predictions and published data from miRNA perturbation experiments. Notably, miRNAs with recurrent target relationships were frequently regulated by genetic and epigenetic alterations across the studied cancer types. We also identify new examples of miRNAs that coordinately regulate cancer pathways, including the miR-29 family, which recurrently regulates active DNA demethylation pathway members TET1 and TDG. The online resource http://cancerminer.org allows exploration and prioritization of miRNA-target interactions that potentially regulate tumorigenesis.


Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Computational Biology/methods , DNA Methylation , Epigenesis, Genetic , Gene Expression Profiling , Humans
13.
PLoS One ; 7(3): e33844, 2012.
Article En | MEDLINE | ID: mdl-22479456

Glioblastoma (GBM) and other malignant gliomas are aggressive primary neoplasms of the brain that exhibit notable refractivity to standard treatment regimens. Recent large-scale molecular profiling has revealed distinct disease subclasses within malignant gliomas whose defining genomic features highlight dysregulated molecular networks as potential targets for therapeutic development. The "proneural" designation represents the largest and most heterogeneous of these subclasses, and includes both a large fraction of GBMs along with most of their lower-grade astrocytic and oligodendroglial counterparts. The pathogenesis of proneural gliomas has been repeatedly associated with dysregulated PDGF signaling. Nevertheless, genomic amplification or activating mutations involving the PDGF receptor (PDGFRA) characterize only a subset of proneural GBMs, while the mechanisms driving dysregulated PDGF signaling and downstream oncogenic networks in remaining tumors are unclear. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that regulate gene expression by binding loosely complimentary sequences in target mRNAs. The role of miRNA biology in numerous cancer variants is well established. In an analysis of miRNA involvement in the phenotypic expression and regulation of oncogenic PDGF signaling, we found that miR-34a is downregulated by PDGF pathway activation in vitro. Similarly, analysis of data from the Cancer Genome Atlas (TCGA) revealed that miR-34a expression is significantly lower in proneural gliomas compared to other tumor subtypes. Using primary GBM cells maintained under neurosphere conditions, we then demonstrated that miR-34a specifically affects growth of proneural glioma cells in vitro and in vivo. Further bioinformatic analysis identified PDGFRA as a direct target of miR-34a and this interaction was experimentally validated. Finally, we found that PDGF-driven miR-34a repression is unlikely to operate solely through a p53-dependent mechanism. Taken together, our data support the existence of reciprocal negative feedback regulation involving miR-34 and PDGFRA expression in proneural gliomas and, as such, identify a subtype specific therapeutic potential for miR-34a.


Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Glioma/genetics , MicroRNAs/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Animals , Base Sequence , Cell Cycle Checkpoints , Cell Line , Cell Proliferation , Glioma/metabolism , Humans , Mice , Platelet-Derived Growth Factor/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
...